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The purpose of this article is to present a way quantitatively to determine the parametric limits to cost 
effectiveness of software inspections based on a previously published model. This analysis leads to the 
conclusion that it is cost effective to inspect both original code and most modifications to the code after 
initial coding. Any exceptions should be carefully considered based on quantitative analysis of the 
projected impact of the exceptions. Further, any proposed substitution for rigorous inspections should be 
carefully evaluated for cost effectiveness prior to replacing or modifying the process. 

 
In this author’s experience, the two following issues are discussed qualitatively when program 
management decides what to inspect and what data to collect:  
• Deciding whether or not to inspect work products based on a qualitative understanding of 

various limiting parameters such as work product size, preparation rate, or expected defect 
density. 

• Deciding whether or not to collect and to analyze inspection data based on a qualitative 
understanding of the return on investment (ROI) on collecting, analyzing, and using 
inspection metrics. 

This article improves on this practice by estimating quantitatively, from the perspective of 
an existing quantitative cost model [1], both the parametric boundaries of inspection cost 
effectiveness and ROI for collecting and analyzing inspection metrics. 

It is important to note that there are several different budgetary strategies that may be 
applied when making process implementation choices. Here are three examples ordered from 
long term to short term in the planning horizon: 
• Minimize total cost of ownership, including post delivery maintenance costs. 
• Minimize overall development cost excluding post delivery maintenance costs. 
• Assure that inspection overhead costs are exactly balanced by reductions in test rework 

costs (this does not minimize costs). 
These goals may be examined within the context of the existing quantitative cost model. 

Then, once the inspection process is quantitatively managed, it becomes possible to study the 
value of various emerging best practices in inspections (see Appendix A). 

Although other process models and cost effectiveness analyses are possible, the results 
are similar [2, 3]. It is possible and reasonable quantitatively to analyze the cost effectiveness of 
inspections with respect to the model parameters. 
 
The Cost Model 
If sufficient metrics are collected during a software development project, it is possible to know 
the cost structure of the various development processes. That in turn enables modeling of the 
cost impact of all processes that discover software defects. In particular, the previous article 
focused on modeling of the impact of software code inspections on the overall cost of 
developing software [1]. This is an example of how you might model the impact of all quality 
practices that detect defects. All such practices are data linked to software testing via the 
defects that escape into the test phase. Indeed you could use the code inspection cost function 
directly on other work products with only minor reassignment of the meanings of the cost 
parameters; just compare the cost of finding and fixing a defect with an inspection to the cost of 
finding and fixing that same defect by another means later in the development lifecycle. 



 

A central result of the previous article is the total cost function for software code 
inspections plus software testing. For this purpose all software regression testing and rework of 
test defects were lumped into a single term. That cost function follows: 
 
 (total cost) = (inspection fixed cost) + (regression fixed cost)  
 + (inspection preparation plus meeting cost)  
 + (inspection rework cost)  
 + (test rework cost plus regression cost) 
or 
 Tc = Ci + Cr + D*S/R + Wri*I*S*[1-(-m)*R] + Tr*Er*I*S*(-m)*R, (1) 
Note: m<0, so (-m)>0, (see the sidebar “Symbol Definitions.”) 
 

This formula includes two terms derived from regression analysis of inspection data. The 
first such term, D*S/R, combines the inspection preparation labor with the meeting labor 
because they were found to be co-linear. D is the regression coefficient and S/R is the 
preparation labor per inspection (code size S divided by the preparation rate R). The second 
term includes the linear regression model for inspection effectiveness as a function of 
preparation rate, Wri*I*S*[1-(-m)*R], where Wri is the average cost of fixing a defect found in an 
inspection, I is the density of defects found by all means (this increases linearly throughout the 
lifecycle), and m is the linear regression coefficient relating inspection preparation rate and 
effectiveness (fraction of discovered defects found by inspection). 

The last term models the testing cost due to defects that escaped into the test process 
because they were missed by the inspection, Tr*Er*I*S*(-m)*R, where Tr is the average cost of 
finding and fixing one defect in testing, Er effectiveness of the testing process at discovering 
defects, I*S*(-m)*R is the number of (eventually) discovered defects not found by software 
inspection. 
 
Method 
For each model parameter there may be a corresponding boundary value that distinguishes 
cost effective process operation from that which is not. In each case, you compare the 
inspection costs with the test costs that may be prevented by conducting inspections. When the 
benefit exceeds the cost, it is cost effective to conduct inspections. You may calculate the ROI 
by subtracting the cost from the benefit and dividing the result by the cost. Positive ROI justifies 
conducting inspections. 

The original model is based on analysis of inspection, test, and cost data for a 
proprietary project at Lockheed Martin Management and Data Systems. The data used in this 
paper are simulated data having the same characteristics as the real data; this substitution is 
required to protect the proprietary nature of the original program data and does not change the 
conclusions that flow from the model analysis. 
 
Results 

The cost model is reviewed and extended to include post delivery marginal maintenance 
costs. Then a cost effectiveness model is developed and applied to several process model 
parameters: inspection preparation rate, inspection package size, defect insertion density, the 
significance of inspection effectiveness correlation, and the ratio of total effort to preparation 
effort.  The model produces a simple inequality that, if true, predicts inspections to be cost 
effective. 
 
Cost Minimization 
Once the decision has been made to inspect a work product, that inspection should be 
managed so that it minimizes the total applicable cost function.   If regression testing is not 100 



 

percent effective, and minimizing the total cost of ownership is the goal, then equation (1) needs 
cost terms to model the cost of fixing defects found after delivery to the customer: CR + 
TR*ER*(1-Er)*I*S*(-m)*R where it is expected that TR > Tr. This results in a linear interpolation of 
the probable costs in testing and customer use: 
 
 Tc = Ci + Cr + CR + D*S/R + Wri*I*S*[1-(-m)*R] + Teff*I*S*(-m)*R (2) 
where  
 Teff = [Tr*Er+ TR*ER*(1-Er)].  
 
In either case, the same mathematical procedure is used to find parameter values that minimize 
the cost function.  

Preparation rate is the only model parameter that causes the cost function to achieve a 
cost minimum, and it does so in the region of applicability of the linear regression fit for 
inspection effectiveness. This regression fit model is thus bounded between zero and one (100 
percent effective inspections): 

  
 0 <= [1-(-m)*R] <= 1. 
 
Substituting the model data from the previous article [1] gives: 
 
  0 < R <= 1/(-m) = 1/0.00075=1329 SLOC/Labor Hour (LH). 
 
If the preparation rate approaches either boundary, a non-linear regression model will be more 
appropriate, provided sufficient data exist to validate the model. 

Product size S and defect insertion rate I both have a positive slope in the cost function 
(the slopes are given by derivatives with respect to model parameters): 

 
 dTc/dS = D/R + Wri*I*[1-(-m)*R] + Teff*I*(-m)*R > 0 
and 
 dTc/dI = Wri*S*[1-(-m)*R] + Teff*S*(-m)*R > 0. 
 
Clearly, both S and I drive up costs linearly, so any scheme that reduces either total size or 
defect insertion rate will drive down development costs provided size and defect insertion rate 
are independent – more about that later. 

The effect of the slope of the regression fit m is determined by the relative effect of the 
cost of finding and fixing defects at various points in the development lifecycle: 

 
 dTc/d(-m) = T*I*S*R > 0 
 
where  
 T = (Teff - Wri). 
 

It is expected that this will be strongly positive. Therefore, any process change that 
improves the effectiveness of finding defects at higher preparation rates will reduce costs. For 
instance, automating some of the checks in the inspection process reduces the labor spent 
finding those classes of defects. 

The minimum process cost occurs at a preparation rate for which the slope of the cost 
function is zero. Thus the cost optimizing preparation rate is found by setting to zero the first 
derivative of the cost function with respect to preparation rate: 

 
 dTc/dR = -D*S/R2 + T*I*S*(-m) = 0 



 

 
 (-m)]*I*D/[T  R* =  (3) 
 
where  
 T = (Teff - Wri)  
and  
 Teff = [Tr*Er+ TR*ER*(1-Er)].  
 
Cost Effectiveness 

With a cost effectiveness strategy, it is necessary to derive an expression that shows 
how inspections can be expected to pay for their own overhead assuming, on average, that they 
will be conducted at the cost optimizing preparation rate. For this example, the cost of finding 
and fixing defects found by the customer is not included. This expression can be derived by 
comparing the average cost of finding a defect in an inspection with the associated cost savings 
in reduced test rework and regression testing. The cost payback is given by the following 
condition: 

 
 (Inspection Costs) <= (Regression Test and Rework Costs Prevented) 
or 
 Ci + D*S/R + Wri*I*S*[1-(-m)*R] <= Cr/N + Tr*Er*I*S*[1-(-m)*R], (4) 
 
or, presuming the inspections will be conducted at the optimum preparation rate, 
 
 (Ci - Cr/N) + D*S/R* <= (Tr*Er - Wri)*I*S*[1-(-m)*R*]. (5) 
 

The right hand side of equation (5) is the average test rework cost per defect prevented 
minus the average inspection rework cost per defect found times the number of defects found 
by the inspection, I*S*[1-(-m)*R*]. Ci is the average overhead cost per inspection, Cr is the 
average overhead cost per test rework and regression test cycle, and N is the average number 
of inspections bundled per regression cycle. Given equations (4) and (5), it is now possible to 
investigate the parametric boundaries or clip levels of cost effectiveness with respect to the cost 
model parameters: preparation rate, inspection size, defect injection rate, repair costs, and 
inspection effectiveness regression coefficient. By making the following substitutions: 

 
 C = Cr/N- Ci (net average fixed costs) 
 N (average inspections per regression suite) 
 T = Tr*Er - Wri (net average repair costs) 
 R* = ]*(-m)*D/[I Τ  (optimum preparation rate) (3) 

 X = (-m)*D  (regression coefficients) 

 Y = T*I  (Y2 is the net burden rate for missed defects) 
 
the governing relationship, equation (5), for the limits of cost effective operation may be 
simplified: 
 2*X <= Y + C/(S*Y). (6) 
 

The following sections will explore the implications of equations (4), (5), and (6) for each of 
the model parameters. 



 

 
Cost Balancing Preparation Rate 

Solving equation (4) for R gives the preparation rate that assures payback of overhead 
costs in reduced regression testing and rework prior to delivery to the customer: 

 
 D*S - [C + T*I*S]*R + T*I*S*(-m)*R2 <= 0 (7) 
 
where it is expected that T=(Tr*Er – Wri)>0 and C=(Cr-Ci)>0. This is of the form a*R2 + b*R + c 
<= 0 which has two bounding roots (small and large): 
 
 RS = -2*c*sign(b)/( c*a*4b|b| 2 −+ ) 
and 
 RL = -sign(b)*( c*a*4b|b| 2 −+  )/(2*a) 
where 
 a = T*I*S*(-m) 
 b = -[C + T*I*S] 
 c = D*S. 
 
Any preparation rate between these two roots will yield cost effective inspections:  
 
 RS <= R <= RL. 
 
The condition for real valued solutions is that (b2 – 4*a*c) >= 0. The two real roots will bound the 
region of interest – the left hand side of equation (7) is negative. Using the data from [1] and 
finding Ci as the y-intercept for small inspections [1]:  
 
 Cr =0, Ci =2, m= -0.00075, I=0.040, Tr = 20, Wri =4, D=4, S=200 
 
and assuming Er = 1.0 gives RS = 6.38 SLOC/Labor Hour (LH), and RL = 1306 SLOC/LH.  
 

By comparison, the cost optimizing preparation rate 91.29 SLOC/LH is equal to the 
geometric mean of the bounding values: 
 
 R* = RR LS ∗   

 = c/a  
 = (-m)]*I*D/[T . 
 
The preparation rate that provides the most negative value for equation (7) is found by setting 
the first derivative of equation (7) with respect to R equal to zero: 
 
 –(C + T*I*S) + 2*T*I*S*(-m)*R = 0 
or 
 Rp = (C + T*I*S)/[ 2*T*I*S*(-m) ]. 
 

Using the above parameters, Rp = 656 SLOC/LH, which is well below 1/(-m) = 1329 
SLOC/LH for regression model validity but well above the overall cost optimizing value 91.29 
SLOC/LH. Please note: if Ci = Cr then Rp = 1/(-2*m) = 664.5 SLOC/LH, which is the exact center 
of the region of applicability of the linear regression model. 



 

While the parametric analysis of the cost effectiveness strategy establishes the 
existence of cost effectiveness boundaries for the inspection process, optimum cost 
performance is not obtained on the boundaries. Rather the most cost effective operation for the 
process is obtained when the optimum preparation rate is used. Figure 1 demonstrates this 
recommended practice. 

 
Figure 1: Inspection/Test Cost Model  
 
It is worth noting that the inverse of the Total Process Cost function in Figure 1 is the test phase 
productivity.  
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Figure 2 displays this function and demonstrates the effectiveness of inspections in 
controlling test phase productivity. 
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Figure 2: Test Phase Productivity Versus Preparation Rate 
 



 

 
 
         
 
The Smallest Size for a Cost Effective Inspection 
Solving equation (6) for equality gives: 
 
 Sc = C/[ Y*|2*X-Y| ] (8) 
 
where S<=Sc when 2*X>Y and S>= -Sc when 2*X<Y. 
 
Please note that there are two singularities: 2*X=Y, where the net probable marginal rework 
costs equals twice the sum of meeting plus preparation costs; and Y=0, where inspection 
rework costs equal marginal regression testing and rework costs. Using the above data: 
 
 Cr =0, Ci =2, m= -0.00075, I=0.040, Tr = 20, Wri =4, D=4, S=200 
 
and assuming Er = 1.0 and using the cost optimizing preparation rate R*=91.29 SLOC/LH gives 
a constraint on size: 
 
 S >= Sc = 3.62 SLOC. 
 
That assumes the testing costs through System Level Test (SLT). Including the costs of 
Operation Release Level (ORL) testing increases the costs significantly to, say, approximately 
Tr = 40 and changes the cut off: 
 
 Sc = 1.53 SLOC. 
 
Please note that both values are very small. Very few defect fixes affect so little code. Indeed, if 
testing fixed costs exceed inspection fixed costs (for the same amount of code), Cr/N > Ci, and 
marginal testing costs prevented exceeds twice the marginal inspection cost incurred, Y > 2*X, 
then -Sc < 0 < S, and all code inspection sizes are cost effective! 
 
Defect Density Clip Level 
Beginning with equation (6): 
 
 2*X <= Y + C/(S*Y) (6) 
 
and solving for Y gives two bounding conditions: 
 YS = (C/S)/[X + SCX2 / − ] 
and 
 Y = I*T  > YL = X + SCX2 / − > YS (9) 
 
Using the above simulated project data and the cost optimizing preparation rate gives: 
  
 I >= { [ 0.003  + 2/S  0.003 +  ]/ T  }2 
 
where T = 16 (SLT costs) or 36 (ORL costs).  
 



 

Figure 3 shows that the defect insertion rate clip level rises for smaller code packages. It is 
important to know that defect insertion rates increase for smaller packages. Indeed, as 
demonstrated by Figure 4, the defect rate increases as the size decreases1. This is data from 
the Space Telescope Grant Management System (STGMS), which is a large Java application of 
over 200,000 non-commented source statements. In the following chart LN is the natural 
logarithm. 
 

Figure 3: Defect Insertion Rate Clip Level Versus Optimum Preparation Rate 
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Figure 4: Space Telescope Grant Management System Revision Density Plot 
 
This trend is not unique. The same trend may be seen on Figure 5, the public domain 

Jetty project (a Java server written in Java)2. One might hypothesize that the slope of the 
regression line is explained by the observation that large classes get edited more often than 
small ones, and each editing session affords opportunity to review all that has been coded to 
date. In that case the effectiveness of defect detection by the author would be proportional to 
the number of opportunities to review the modules in the class. The total number of review 
opportunities (and the effort to build the class) would scale as the square of the number of 
modules. Hence the defect density would be roughly proportional to Size/1  if the modules are 
of similar size and complexity. The variance in the scaling would be sensitive to the variation in 
the review habits of the individual developers. As such, both defect detection and defect 
prevention would be subject to potential process improvement and training. In the following 
chart LN is the natural logarithm. 
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Figure 5: Jetty Revision Density Plot 

 
A further consideration is that reworked code is known to have a significantly higher 

defect insertion rate than initially written code, especially if the maintainer is not the original 
author. From Capers Jones [4], out of a total average defect load of five defects per function 
point, 0.4 defects/Function Point is contributed from bad fixes. That says that there is about an 8 
percent probability of making a bad fix. That is a defect insertion rate of 80 defects/thousand 
single lines of code (KSLOC) in code repairs. This is significantly higher than the defect rate for 
new code that Capers Jones lists as 50 defects/KSLOC. From these charts it is very clear that 
inspections are justified for even small changes unless the regression cost is very low indeed. 
Post delivery, the regression costs tend to be even greater, making the case even stronger for 
inspections. 
 
Clip Level for Net Cost to Fix 
One can also solve equation (9) for the net cost to fix a defect: 
 
 Y = I*T  > YL = X + SCX2 / −  (9) 
thus 
 T >= {[X + C/SX2  − ]}2/I. 
Using the example data generates Figure 6:  
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Just as with defect density, one can solve equation (6) for the critical linear regression 
coefficient (-m) above which inspection costs dominate regression test costs at the optimum 
preparation rate: 
 2* (-m)*D = 2*X <= Y + C/(S*Y). (6) 
Solving for (-m) yields 
 (-m) <= (-mc) = [Y + C/(S*Y)]2/(4*D). (10) 
 
Using the simulated program data gives the following figure: 
 
 (-mc) = 0.0189 for S=10 (small changes). 
 
In the example data (-m) = 0.00075, which is much less than the critical value. So, inspections 
are well justified even for small changes. However, there is a size cut off that causes the 
numerator of equation (10) to become zero:  
 
 Sc = -C/Y2 
 Sc = 3.1 (SLT costs) 
or 
 Sc = 1.4 (ORL costs). 
 

Please note that (-m) must also be statistically distinct from zero at some acceptable 
confidence level, say α/2=0.025 for a two tail t-test. For this example, the standard error in (-m) 
is 0.0000387, and t-critical is 2.3646. The minimum significant value for (-m) is 
2.3646*0.0000387=0.0000915, well below the actual value. 
 

Figure 6: Clip Level for Net Cost to Fix a Defect Critical Regression Coefficient 
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Critical Meeting Rate 
By rearranging equation (10) it is possible to specify the meeting rate above that it is not cost 
effective to conduct inspection meetings: 
 
 D <= Dc = [Y + C/(S*Y)]2/[4*(-m)]. (11) 
 
For the example data, Dc = 101 for S = 10 and SLT costs and Dc = 356 for ORL costs. These 
are well above the example value D = 4, so time spent in the meeting does not constrain the 
cost effectiveness of the process. 
 
Return On Investment for Metrics Analysis – Knowing the Optimum Preparation Rate 
First calculate Total Process Cost less Cost at Optimum evaluated at the unmanaged 
preparation rate: 
 
 TM = S*D*(1/R – 1/ R*) + S*I*(-m)*T*(R - R*). 
 
Given the simulated data  
 
 Cr =0, Ci =2, m= -0.00075, I=0.040, Tr = 20, Wri =4, D=4 
 
with project teams averaging approximately S= 600 SLOC at R= 300 SLOC/LH, and R* = 91.29 
SLOC/LH, the excess process labor at the unmanaged preparation rate is 
TM= 41.8 LH/inspection. 
 

So, on average, using the overhead cost of setting up, managing, recording, and 
analyzing an average inspection (assuming a fair amount of automation and tool support), Ci = 2 
LH, the ROI for collecting and analyzing metrics for an average inspection is substantial3: 
 
 ROI = (TM-C)/C = (41.8-2)/2 
 ROI = 20. 
 

In this case, on average, every hour spent collecting, recording and analyzing inspection 
metrics will potentially return about 20 hours in reduced testing and fixing cost. The ROI will be 
even higher if one includes the added benefits of using the metrics to support defect causal 
analysis and associated process improvement to prevent future defects of a similar type from 
occurring [5, 6]. Clearly, it is critical to collect and to analyze the inspection data and to manage 
the preparation rate accordingly. 
 
Discussion and Recommendations 
Within the context of the existing cost model, one can answer the initial question in the title of 
this article. The parametric boundaries of cost effective operation have been derived and shown 
to impose relatively benign operational constraints. Further, it has been demonstrated that the 
return on investment for collecting and analyzing inspection metrics well justifies doing so.  

It is well known that the cost of finding and fixing defects increases throughout the 
development life cycle. Since code is the last development phase prior to testing, and since the 
cost to fix artifacts increases throughout the development life cycle [7], and since it is 
reasonable that the cost to fix a test script would be similar to the cost to fix a code defect, it is 
therefore clear that earlier work products are even more cost effective to inspect than code. 

Therefore, because it is cost effective to do so, it is established that performing rigorous 
inspections should be the default behavior for all software work products that affect the quality 



 

of the delivered code provided there is a documented development process with defined work 
products in addition to code. It is expected that any organization with an ISO-9001 certification 
or a rating above Capability Maturity Model® Integration Level 2 would have documented 
development processes and defined work products that affect the quality of delivered code.  

Exceptions to this rule should be granted only after careful quantitative analysis of the 
cost impact of such exceptions using equations (3) and (6):  

 
 ]*(-m)*D/[I  R* Τ=  (3) 
 2*X <= Y + C/(S*Y). (6) 
where 
 X = (-m)*D  (regression coefficients) 
 C = (Cr + CR)/N- Ci (net average fixed costs) 
 N (average inspections per regression suite) 
 T = Tr*Et+ TR*ER*(1-Et) - Wri (total net average marginal repair costs) 
 Y = I*T  (Y2 is the net burden rate for missed defects) 
 S (size of inspected product – SLOC, etc.). 
 

Given that inspections are run at (or near) the optimum preparation rate, then the model 
makes predictions about average achievable inspection effectiveness: 

 
 E* = 1 – X/Y (12) 
 
and average test phase productivity:  
 
 Pr

* = S/Tc = 1/{ [(Cr + CR)/N + Ci]/S + I*Wri + 2*X*Y }. (13) 
 
Finally, it is recommended that any proposed substitution for formal inspections should be 
carefully evaluated for cost effectiveness prior to replacing or modifying the existing process by 
deriving an equivalent cost model and performing equivalent analysis. 
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<www.stsc.hill.af.mil/crosstalk/frames.asp?uri=1998/03/optimizing.asp>. 
• Don O’Neil. “National Software Quality Experiment: A Lesson in Measurement: 1992-

1997.” Crosstalk Dec. 1998 
<www.stsc.hill.af.mil/crosstalk/frames.asp?uri=1998/12/oneill.asp>. 

4. The company that has achieved repeatable 100 percent effective inspections is 
TATA Consultancy of India. 

 
Sidebar A: 
Symbol Definitions 
Please note that subscripts indicate the following: 
i refers to inspections. 
r refers to rework after testing. 
ri refers to rework after inspection. 
R refers to regression testing and fixing after delivery. 
Ci = Y-intercept of empirical fit of total inspection labor (preparation plus meeting), 

overhead cost per inspection (labor hours). 
Cr = Testing cost overhead per regression test suite, overhead cost per set of test defects 

(test overhead costs prevented by an inspection) (labor hours). 
CR = Testing cost overhead per regression test suite, overhead cost per set of test defects 

found by the customer (test overhead costs prevented by an inspection) (labor hours). 



 

D =  Slope of empirical fit of inspection labor plus meeting labor vs. preparation labor 
(dimensionless ratio). 

Er =  Test effectiveness (defects found in test/defects found in test plus those found  
 after test completion excluding all defects that cannot be found by testing,  
 e.g., requirements defects when the tests are required to be consistent with 

documented requirements and the testers are not allowed to challenge the validity of 
the requirements) (% defects found in this phase). 

ER =  Customer test effectiveness (defects found in acceptance test plus those found in user 
operation/those defects plus estimated remaining defects.) (% defects found by the 
customer). 

I =  Discoverable code defect rate = (code inspection defect rate + test defect rate) 
(defects/SLOC). 

LH = Labor Hours (this is much easier to record and to use than monetary cost). 
m =  Slope of code inspection effectiveness regression line (%/(SLOC/LH)). 
R =  Code inspection preparation rate (SLOC/labor hour). 
R* =  The cost optimizing code inspection preparation rate (SLOC/labor hour). 
S =  Total SLOC inspected. 
SLOC =  Non-comment, non-blank, physical lines of code. Any consistently used size  
 measure will work, e.g., executable statements, function points, etc.  
T0 = Labor for testing perfect code (regression testing not needed) (labor hours). 
Tc =  Total cost (labor hours). 
TM = Total excess cost due to non-optimal inspection preparation (labor hours). 
Tr =  Labor per defect to do test rework and regression testing (labor hours/defect). 
TR =  Labor per defect to do rework and regression testing of defects found by the customer 

and user community. (labor hours/defect). 
Wri =  Labor hours to rework a code inspection defect (labor hours/defect). 
 
Term Definitions 
Ci+D*S/R = Labor for inspection preparation plus the inspection meeting. 
I*S =  Defects present at code inspection. 
(1+m*R) =  Code inspection effectiveness.  
I*S*(-m)*R = Defects missed by the code inspection that escape into test. 
I*S*(1+m*R) = Defects found by the code inspection. 
S/R =  Inspection preparation labor. 
T0*S=  Total labor for testing perfect code (regression testing not needed). 
Tr*Er*I*S*(-m)*R =  Labor to do test rework. 
TR*ER*(1-Er)*I*S*(-m)*R = Labor to fix defects found after delivery to the customer. 
Wri*I*S*(1+m*R) =  Labor for reworking defects found during the inspection. 
 
 
Appendix A 

Even though the practice has existed since the mid 1970’s, performing rigorous software 
inspections (at all) has been and continues to be an industry best practice [8]. Nevertheless, 
software inspections have room for improvement. Radice claims that 100 percent effective 
inspections are becoming more common and may some day become much more so4 [9, 10]. 
There are several best practices that may make significant contributions to that quest [11]: 

• Use of a Quantitative Cost Model to manage the inspection process. 
• Managing the inspection process via statistical process control (SPC) on preparation 

rate. 
• Using a defect prevention process in conjunction with inspections to improve both 

product and process (check lists, tools, etc.). 



 

• Use of SPC on both the preparation rate and the defect rate to trigger use of the defect 
prevention process [12]. 

•  Use of Tools to automate parts of the inspection. 
• Use of Perspective Based Reading techniques to improve the effectiveness of the 

inspections [13]. 
• Use of pilot studies to measure the effect of proposed process improvements. 
• Use of experimental design techniques to improve the cost effectiveness of pilot studies 

of proposed process improvements. 
Given a validated model for the cost effectiveness of inspections, it is possible to compare 

the regression line for cost effectiveness of proposed variations to the regression line for the 
cost effectiveness of the initial process. Standard statistical tests at a predetermined confidence 
level can then be applied to the difference thus creating an objective standard for determining 
the cost effectiveness of the process variation. 
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